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Abstract

Previous studies have investigated a wide range of factors potentially explaining software build breakages, focusing
primarily on build-triggering code changes or previous CI outcomes. However, code quality factors such as the presence
of code/test smells have not been yet evaluated in the context of CI, even though such factors have been linked to
problems of comprehension and technical debt, and hence might introduce bugs and build breakages. This paper
performs a conceptual replication study on 27,675 Travis CI builds of 15 GitHub projects, considering the features
reported by Rausch et al. and Zolfagharinia et al., as well as those related to code/test smells. Using a multivariate
model constructed from nine dimensions of features, results indicate a precision (recall) ranging between 58.3% and
79.0% (52.4% and 69.6%) in balanced project datasets, and between 2.5% and 37.5% (2.5% and 12.4%) in imbalanced
project datasets. Models trained on our balanced project datasets were later used to perform cross-project prediction
on the imbalanced projects, achieving an average improvement of 9.3% (16.2%) in precision (recall). Statistically, the
results confirm that features from the build history, author, code complexity, and code/test smell dimensions are the
most important predictors of build failures.

Keywords: Continuous integration, Build failure, Test smells, Code smells, Quantitative analysis, Cross-project
prediction

1. Introduction

The last 20 years have seen continuous integration (CI)
turn into a best practice for software organizations to man-
age the regular integration of developers’ code into shared
repositories such as GitHub or Bitbucket [1]. CI tools au-
tomatically run all (scheduled) builds and tests to ensure
that submitted code changes are free of compilation and
test failures. However, this process can be time-consuming
and costly. It is estimated that large (legacy) projects may
take hours or even days to build [2, 3, 4].

This affects the overall efficiency of developers since
major decisions (on code changes) depend on the outcome
of the ongoing build. The situation becomes worse when
build inflation is considered. Build inflation occurs when
a single commit results in several automated builds due
to the different specified configurations (runtime environ-
ments, operating systems and hardware architectures) [5].
Therefore, the ability to automatically predict build out-
comes could avoid waiting for the (many) build results
to come in, saving the organization substantial time and
money. For example, organizations can choose not to run
predicted successful builds, freeing up time and resources
to focus on the predicted failing builds.
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It should be noted that a build, in the context of this
work, is a set of configured jobs that differ from each other
by the execution environment. The status of a build is
determined by the state of its jobs — a build is success-
ful only if all jobs are successful. CI jobs are often com-
prised of three phases: (i) the traditional build and com-
pile phase, (ii) a phase in which automated static analysis
tools (e.g., FindBugs, PMD and JSHint) are executed, (iii)
a testing phase for running unit, integration, and system
tests. If one of these phases fails, the entire build fails [3].

Many explanatory and prediction approaches have been
proposed by the research community to identify the causes
of software build failures and ways to reduce the cost and
effort of fixing such failures. These studies characterise
build failures, in general, using properties of social net-
works [6], socio-technical congruence [7], without taking
into account the specific context of CI builds. Recently,
other studies have focused on the use of source code fea-
tures in predicting build outcomes. For example, Finaly et
al. [8], using Hoeffding Tree classification method, identi-
fied source code features as useful features to predict build
success and/or failure in software products. Also, Has-
san [9] proposes a model based on the complexity of code
changes. However, the vast majority of these works use
univariate models that only assess the effect of individual
features, and also pay little attention to code quality.

Therefore, in this paper, we are interested in investi-

Preprint submitted to the Journal of Systems and Software February 9, 2021



gating whether multivariate models, rather than univari-
ate models of project features, can more accurately ex-
plain and predict build failures. To achieve this, we per-
form a conceptual replication of the studies by Rausch et
al. [10] and Zolfagharinia et al. [5]. Rausch et al. [10] found
code complexity, author experience and build history to be
statistically influential factors in explaining build failure,
while Zolfagharinia et al. [5] explored the impact of build
environments and platforms on build failures.

Unlike exact replications that follow the procedures
(and data) of the original study as closely as possible, con-
ceptual replications use different experimental procedures
to study the same (or similar) research questions and al-
low the research community to gain additional confidence
in the results of the original study [11].

Therefore, in this paper, we build multivariate models
based on a combination of the features used by Rausch
et al. [10] and Zolfagharinia et al. [5]. In addition, we
include a number of quality features, related to code and
test smells, in our multivariate models. Previous studies
have shown that the presence of code and test smells can
negatively affect the quality of test suites and production
code [12], potentially exposing the codebase to incremental
changes and fault-proneness [13, 14, 15, 16].

To the best of our knowledge, this is the first study
that is combining code/test quality and development pro-
cess features; we consider 16 development process features
(e.g., the complexity of code changes, developer experi-
ence, date and time of commits, build history) [10], one
build environment feature (runtime environments) [5], 12
code smells and 5 test smells.

In addition, our study separately analyzes the effect of
the aforementioned features on 27,675 Travis CI builds of
15 Java GitHub projects. By building explanatory (RQ1/2)
and predictive (RQ3) random forest models, we address
the following research questions:

• RQ1: How well do models based on the con-
sidered factors explain build failures?
Our exploratory models, combining nine different di-
mensions of features, achieve a median precision of
79.0%, a median recall of 69.6% and a median AUC
of 75.3% in balanced projects. However, models in
imbalanced projects achieve a median precision of
37.5%, a median recall of 12.4% and a median AUC
of 55.3%.

• RQ2: Which features are the best indicators
of build failures?
We found that in both balanced and imbalanced
datasets, individual features of the code complex-
ity (Number of commits, Number of Author, Number
of Lines Removed, Number of Lines Added), author
(Author Experience), build history (Build Climate,
Previous Build, Days since Last Fail), code smell
(Long Parameter List, Many Field Attributes But
Not Complex, AntiSingleton, Large Class, Specula-

tive Generality), test smell (Sensitive Equality) di-
mensions are the most important features that could
be used to explain build breakages.

• RQ3: Can we predict the outcome of future
builds?
Our on-line prediction model was able to predict fu-
ture build failures with a precision (recall) ranging
between 25% and 80% (5% to 70%) based on the
proportion of failing builds in the dataset. Our re-
sults confirm earlier on-line prediction results by Xia
and Li [17].

We believe that both practitioners and researchers would
benefit from the results of our replication study. Our re-
sults confirm most of the key findings of the original stud-
ies. More specifically, we confirm that the complexity of
code changes, build type, results of previous build, and
author experience have high correlation with build fail-
ures. On the other hand, the impact of file types and
build environment on the outcome of a build were not
(fully) confirmed in our study. Additional analysis con-
ducted in this work shows that the performance of build
prediction models on imbalanced datasets can be improved
using cross-project models trained on balanced datasets.
We recorded an average improvement of 9.3% (16.2%) in
precision (recall) for imbalanced project datasets. These
results provide opportunities for future research; our repli-
cation package is made publicly available to aid in such
future research endeavours [18].

The remainder of this paper is organized as follows.
First, we discuss the related literature on build failure in
Section 2. Next, we describe the experimental setup of
our study in Section 3 and report our findings in Section
4. In Section 5, we provide in-depth discussion of our find-
ings and compare our results with those of the replicated
papers. Section 6 discusses threats to the validity of our
work. Section 7 concludes our work and outlines avenues
for future work.

2. Related Work

In this section, we go through related studies and high-
light our contributions. We group our related work into
two different areas: (i) predicting builds and (ii) code qual-
ity and failure proneness.

2.1. Predicting failing builds
Existing studies have identified compilation errors, fail-

ing tests, dependency errors and build configuration/en-
vironments as the most common causes of build failures
[5, 10, 19, 20]. In addition, other studies have used ex-
planatory models to identify correlations between build
failures and historical project information such as code
changes and socio-technical factors [6, 10, 21]. For exam-
ple, Seo et al. [21] observed that the dependencies among
developers and software components increase when the
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sizes of the team and the project are large. Such dependen-
cies, particularly in code, are susceptible to broken builds.
Wolf et al. [6] also studied the relation between the com-
munication structure of development teams and the re-
sult of their code integration build processes. They found
that developer communication has an important role in the
quality of software integration. Their exploratory model
yielded recall values between 55% and 75%, and precision
values between 50% to 76%.

Several other researchers have proposed approaches that
use code features, social network analysis and socio-technical
factors to predict the outcome (failure) of future builds.
The first study in the area of predicting failing builds, by
Hassan and Zhang [4], introduced a decision tree model
that was able to predict 69% of failures based on histori-
cal information. Xia and Li [17] compare the performance
of nine classifiers in predicting build failures across 126
OSS projects. Using cross-validation models, they ob-
served that the Random Forest classifier attains the best
performance (across 48 projects) with median AUC and
F1 scores of 76% and 56%, respectively. They also per-
formed on-line prediction on chronologically ordered builds
and found the Random Forest among the best performing
classifiers with median AUC and F1 scores of 54% and
10%.

Other researchers have used build prediction as a way
to reduce the total number of builds in a CI pipeline. Jin
and Servant [22] proposed a tool called SmartBuildSkip,
which reduces the number of builds by skipping predicted
build successes until a failure is predicted; predicted failed
builds are then executed until they succeed. Their ap-
proach uses features such as the complexity of changes, his-
torical builds (ratio of passing build, failure distance), date
and time, and project characteristics (e.g., age, test den-
sity, project, and team size). They proposed two variants
of their approach, one to learn from previous builds within
a project and another to learn from cross-project data (at
the start of a new software project). Similarly, Ni and Li
[9] use cascaded classifiers to set high-confidence threshold
for successful builds and only keep builds that are likely
to fail, thus reducing the number of executed builds and
providing more refined analysis. Their model was able to
identify 85.2% of the defective builds. They used a combi-
nation of historical statistics (project and committer), last
push, and current build dimensions as features to the pre-
diction classifiers. Their approach outperforms classifiers
like C4.5 decision tree and NaiveBayes with a precision
(recall) of 73.7% (80%).

The closest works to ours, for which this replication
study is conducted, are by Rausch et al. [10] and Zolfagharinia
et al. [5]. Rausch et al. [10] performed qualitative and
quantitative studies on CI build failures and identified sev-
eral features that have strong correlations with build fail-
ures. These features were categorized into two groups: (1)
process features collected from the characteristics of the
commits that trigger automated builds, i.e., complexity of
code changes, file type, date and time, developer-specific

criteria; and (2) CI features, corresponding to build type,
pull request scenario and characteristics of build history.
Using univariate models, the authors identified code changes
(of high complexity), build history climate, and developer
experience to have significant effect on a build’s outcome.
In contrast to their strategy, we use both individual and
multivariate analysis to better explain the relative impact
of a feature on build failure. Multivariate models take
all the analyzed features into account when explaining or
predicting build failures.

Zolfagharinia et al. [5], on the other hand, explored
other kinds of features such as the operating systems, run-
time environments and hardware architectures on which
the build was executed in the continuous integration sys-
tems. Based on an analysis of the impact of 7 OSes and
22 environments on build failures, the authors observe that
the most common build failure categories are caused by the
targeted OSes and build environments. In addition, their
results show that the build results across all OS are not
necessarily uniform. They recommend careful filtering and
selection of the results of CI in order to identify reliable
build failure data. They found, across the studied versions,
that 77% of the builds were successful on all build environ-
ments, and 12% of the previously failing builds are fixed
in later versions of the build environment. However, the
remaining builds (11%) always fail irrespective of the used
build environment version. In our replication, we chose a
different set of Java projects (instead of the Perl projects
used by Zolfagharinia et al. [5]) due to the requirements
of our code/test smell analysis tools. We applied random
forest exploratory models to analyze the impact of four
Java environments (identified from the studied projects)
on the builds failure. While, we did not find a statistical
improvement of environments as a dimension, we found
the effect sizes of the individual environments.

2.2. Code quality and failure proneness
Code and test smells are poor solutions to design and

implementation problems, and their presence can lead to
fault proneness. Khomh et al. [14] studied the relationship
between code smells, code changes and fault-proneness in 4
object-oriented systems. They found that classes affected
by code smells are frequently changed and have a higher
tendency to be fault-prone compared to safe classes. Sa-
bane et al. [23] also studied the impact of anti-patterns on
the cost of testing in a given system. They showed that
the presence of anti-patterns, on average, require a higher
number of test cases compared to safe classes i.e., with-
out anti-patterns. They conclude that anti-pattern classes
should be carefully tested due to their fault proneness com-
pared to other safe classes.

Researchers have shown that test smells are widespread
in the software. Bavota et al. [16] introduced test smells
as code smells related to test files i.e., unit test. They pro-
posed a test smell detection approach which they used to
analyse the occurrence of test smells in both open source
and industrial software systems. Their results indicate

3



that test smells are highly diffused and impact 86% of
JUnit test files. Moreover, they found evidence that test
smells impact program comprehension and maintainabil-
ity – program comprehension is improved by 30% in the
absence of test smells.

Peters et al. [24] investigate the lifespan of code smells
and how developers refactor source code. They analyzed
several Java open source systems using a tool called SAC-
SEA. They concluded that despite the importance of treat-
ing code smells, engineers often neglect code smells and do
not pay great attention to their existence. Besides, Tufano
et al. [25] explored the presence of test smells in projects,
how long test smells could occur in a project over its lifes-
pan, and if their presence is correlated with some code
smells. They found that usually test smells are introduced
at the beginning of the testing process of the project and
they tend to remain in the system for a long time.

Other researchers used machine learning approaches
based on the code design to predict bugs. Taba et al. [26]
showed that the occurrence of a single anti-pattern in files
tends to increase the bug density of such files, and they
recommend developers to pay more attention on testing
activities. Also, they found that traditional code features
such as LOC, PRE (Pre-Released bugs), and Churn do
not improve bug prediction, but features related to anti-
pattern ANA (Average Number of Antipatterns), ACM
(Antipattern Complexity feature), and ARL (Antipattern
Recurrence Length) can provide additional information re-
lated to build failure. They recommend using ARL fea-
tures based on their improvement to bug prediction mod-
els.

In this paper, we built multivariate hierarchically mod-
els using multiple dimensions that combine the build failure-
related features used by Rausch et al. [10] and Zolfagharinia
et al. [5], with software quality features and test smells by
Taba et al. [26] and Bavota et al. [16]. From these features,
we were able to identify the features that have the most
impact on build failure.

3. Case Study Design

This section presents the overall design of our concep-
tual replication study, including the selection of projects
from the open source TravisTorrent repository, the collec-
tion and rationale of features, the identification of code
and test smells from source code, and the construction of
build failure models. The overall setup of our study is
illustrated in Figure 1.

3.1. Selection of Case Study Systems
As previously mentioned in Section 1, the goal of this

conceptual replication study is to apply a different exper-
imental procedure (multivariate models) on different sub-
ject systems to identify the individual and combined effect
of previously identified features on explaining and predict-
ing build failures.

Since we require projects with substantial size such
that the number of analyzed builds, features, and build
failures are non-trivial (and hence build failure models be-
come beneficial), we purposively sample projects from the
TravisTorrent dataset [27]. TravisTorrent automatically
applies several criteria to ensure that its dataset contains
only non-fork, non-toy, and popular projects (> 10 watch-
ers on GitHub) with a history of more than 50 builds.
Purposive sampling allows us to select projects with spe-
cific characteristics that are relevant to this study [28].

In order to filter out projects with trivial build activity,
we consider the build duration and the number of builds in
projects. We extract the build duration from the build logs
for each 2-week period, then rank the median build dura-
tions of all the projects. We select the top 20 projects with
the highest median build duration. Since such projects
take a long time to complete their builds, they could ben-
efit the most of build failure prediction models.

Next, we filter out two non-Java projects and three
projects with extremely low number of failing builds (11
failing builds in total across the three projects) from our
study. We only consider Java projects in our analysis due
to the use of the Ptidej tool [29] to detect code smells and
Bavota’s tools [16] to detect test smells in JUnit test cases.

The remaining 15 projects are further split into two sets
based on the number of builds. We require a minimum of
510 builds for each project, which is 34 (the number of
features detailed in Section 3.2) multiplied by 15. This
sample size requirement ensures adequate discrimination
by our models, as recommended by Harrell [30]. The first
set contains the 10 projects that meet the minimum re-
quirement for the number of builds. This set of projects
is used to answer RQ1, RQ2 and RQ3, and contains 3 of
the 14 projects used by Rausch et al. [10], but none of the
(Perl) projects used by Zolfagharinia et al. [5]. It should
be noted that we include the storm project (having only
477 builds), since it has balanced classes of builds (69%
failure classes) and is the project closest to the filter limit.
The other 5 projects are later used in our discussion sec-
tion (Section 5.1) to evaluate our cross-project prediction
models for projects with insufficient builds.

We present the chosen 15 projects with a short descrip-
tion, the main characteristics for selection, and the per-
centages of failed builds in Table 1. The 10 projects used
in our research questions are indicated in bold, while the 5
projects used for cross-project prediction are not. Also, as
shown in the table, the 15 projects are categorized into bal-
anced or imbalanced projects based on their proportion of
failed builds (see column # Failures in (D)). Projects with
a 30% or less proportion of failed builds are considered im-
balanced, i.e., our dataset consists of nine balanced and
six imbalanced projects. It should be noted that, While
the TravisTorrent dataset has four types of build status
(passed, failed, errored and canceled), we ignored canceled
builds (0.2% of total builds) because they denote an inter-
rupted build process. We consider the passed build status
as a successful build, while the failed and errored build
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Figure 1: Overview of case study setup.

statuses are considered as failed builds [31].
Finally, due to the requirements of the code and test

smell detection tools, we filter out builds that have no Java
sources and run no tests. These builds, representing 36.6%
of all builds, are kept separately and later analyzed in more
detail (see Section 5.2).

3.2. Features Selection
As previously mentioned, this replication study reuses

features studied by Rausch et al. [10] and Zolfagharinia
et al. [5], and also adds other kinds of code quality fea-
tures. We compute code smells using the Ptidej tool [29],
and identify test smells using Bavota et al.’s approach [16].
Tables 2, 3 and 4 summarize the development process fea-
tures, code smells and test smells used in this work, re-
spectively. The replicated features of Rausch et al. [10] are
indicated in bold (in Table 2) while Zolfagharinia et al.’s
feature(s) [5] are underlined (in Table 2). In what follows,
we provide the rationale for selection and the methodology
of collection for the non-trivial features.

In the rest of the paper, we use the term "commit" to
refer to units of work stored in a version control system
like Git, while a "changeset" (sometimes called a "push")
is a sequence of commits that, together, are sent to the CI
system to be built. Ideally, a changeset should consist of
only one commit. However, due to build volume, modern
organizations group multiple commits into a changeset to
reduce the number of resources needed for the CI infras-
tructure [21]. The most recent build in a changeset is said
to "trigger" the build for the changeset.

Complexity of changes: This dimension of data con-
tains information related to size and complexity of code
changes; the larger part of a system one needs to modify,
the higher the chance the build will fail. Entropy for code
changes (CX) measures how spread out each changeset is
across the changed files, and is computed using an existing
open source tool1 that we adapt to report entropy across
all changed files of a build (containing multiple commits)
instead of across a single commit.

1https://github.com/GripQA/commit-entropy

File types: Changes in certain kinds of project files
might be more frequent and failure-prone than others.
In our approach, we distinguish between sources, docu-
ments and other files based on the file type feature from
Travis torrent [27]. We manually added information about
changed test files by extracting commits that changed files
in test repositories using the approach of Macho et al. [32],
which specifies that test files should be in a specific "/sr-
c/test" folder.

Date and time: This feature dimension contains the
time and weekday that developers make code changes in
the build-triggering commit.

Author: Several studies in literature show that certain
characteristics of developers directly affect the quality of
source code and have an impact on build failure. Suzuki et
al. [33] observed that the experience of committing authors
and the number of developers involved with the modified
files in a commit are causal factors of build breakage. Ey-
olfson et al. [34] found that daily-committing developers
produce less buggy commits, and in that case, experienced
developers could be reviewers for other developers’ com-
mits. Apart from more traditional experience features like
AX and ACF, the CTM feature identifies whether a build-
triggering commit was issued by core team member. A
core team member is someone who has committed code at
least once within the three months before this commit, ei-
ther directly or by merging commits [27]. We consider the
author of the build-triggering commit as the main author
of the changeset. In the context of this feature, authors
and committers are considered the same — the core team
member who pushed a source code changeset.

Build type: Similar to Rausch et al. [10], we classify
different Travis CI build types (BT) based on the type of
build-triggering commit. A build triggered by a commit
made directly to the master branch is classified as a PUSH.
Pull request related builds are classified as either a PR, if
the build is triggered upon the creation of a pull request, or
as a PR-MERGE when the build is triggered upon merg-
ing a pull request into the codebase. For builds triggered
by manual merge commits (branches merged locally and
then pushed), we classify the build as aMERGE if the trig-
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Table 1: Characteristics of the selected TravisTorrent projects. Projects in bold meet the minimum requirement of 510 builds (see column #
Useful Builds).

Project Name Description
Median build

duration*

# Builds

(A)

# Canceled

Builds

(B)

# Builds without

Java sources&Test

(C)

# Useful Builds

(D)=(A)-(B)-(C)
# Failures in (C) # Failures in (D)

Date of

1st build

Date of

last build

Geoserver Server to share and edit geospatial data 22.28 2996 8 1058 1930 508 (31.69%) 1095 (57%) 2013-09-28 2016-08-31

Grails-core Framework used to build web applications 39.72 2207 32 1319 856 399 (57.99%) 289 (34%) 2014-05-12 2016-08-31

Apache jackrabbit-oak Open source content repository for Java platform 25.57 8205 0 1405 6800 589 (17.08%) 2859 (42%) 2012-06-18 2016-08-31

Facebook presto Distributed SQL query engine for big data 30.97 2153 0 511 1642 259 (23.42%) 847 (52%) 2013-11-06 2015-08-07

Hubspot Singularity Scheduler for running Mesos tasks 27.93 3871 1 2809 1061 1451 (76.89%) 436 (41%) 2016-02-13 2016-08-31

Apache storm Distributed computation framework 73.93 935 0 458 477 332 (50.15%) 330 (69%) 2016-03-03 2016-08-31

aws-sdk-java Ease the work with Amazon Web Services 20.05 366 2 132 232 83 (62%) 153 (66%) 05-07-2015 08-30-2016

helios Docker orchestration platform 46.5 389 1 155 233 61 (39%) 64 (37%) 06-06-2014 10-23-2014

jcabi-github Object-oriented wrapper of Github API 65.2 820 0 384 436 188 (48%) 138 (64%) 04-11-2014 08-31-2016

Grpc-java RPC library and framework for JDK 39.88 1204 2 272 930 40 (30.53%) 91 (10%) 2015-03-20 2016-08-31

Lenskit Tools for benchmarking filtering algorithms 29.82 906 3 381 522 112 (61.2%) 71 (14%) 2013-09-19 2016-07-22

Dropwizard Framework for developing RESTful web services 44.73 1537 5 596 936 49 (40.5%) 72 (8%) 2013-04-05 2016-08-27

Cloufoundary uaa Multi_tenant identity management service 73.93 1208 20 427 761 71 (51.45%) 67 (9%) 2013-02-04 2013-09-19

hivemall Hive scalable machine learning library 75.6 310 5 111 194 37 (33%) 30 (18%) 10-30-2014 07-15-2016

optiq Dynamic data management framework 27.41 568 0 162 406 31 (19%) 50 (14%) 07-16-2013 10-19-2014
* In minutes

gering commit is the sole commit in the build’s changeset,
and as an INTEGRATION if the build’s changeset con-
tains multiple commits. All other cases are classified as
UNKNOWN builds.

Build history: The build history dimension takes into
account the historical state of the builds of projects. Has-
san et al. [4] show that using previous build results helps
to fit prediction models with high accuracy. Within the
Travis torrent dataset [27], we used the parent of a given
build as the previous build (PB), and recursively iterated
over further ancestors to identify the most recent failure
for the calculation of days since last failure (DLF). Fur-
thermore, we used k = 10 to compute build climate (BC).
We were unable to compute build history features for 0.4%
of the studied builds due to the lack of parent’s build i.e.,
at the beginning of a project. To deal with such cases
of data imputation, we replace the null values by ’-1’ [35]
[36].

Build environment: In Travis CI, builds are com-
posed of several jobs depending on the number of environ-
ments requested by developers in the build configuration.
Therefore, we create our dataset using each environment
as an attribute (column) — if there are 5 jobs with differ-
ent environments, we will have one row (representing the
build) with 5 "true" values in different columns. Since our
studied Java projects are built on only the Ubuntu OS (by
TravisTorrent), we limit our study on build environments
to the different versions of Java runtime environments used
(e.g., openJDK7 and oracleJDK8).

Code smells: Table 3 lists the set of smell features
(obtained from [29]) used in this study. To identify code
smells in the source code, we followed these steps for each
project:

1. Starting from the first commit, we take snapshots of
the project’s repository using a window of 200 com-
mits. Although related work by Canfora et al. [37]
considers a period of 500 commits to increase the
probability that a source code file is changed within

the period, we recommend that a period of 200 com-
mits is large enough and finer-grained to better de-
tect the evolution of code smells in the source code.
This decision is based on the high effort to compute
code smells and the low likelihood of their refactor-
ing [38].

2. Compute and gather code smells for each selected
snapshot using the Ptidej tool [29].

3. Map every single build changeset to its closest snap-
shot, then assign the identified smells of that snap-
shot to the changed files of the changeset and its
build.

Test Smells: We used the approach by Bavota et
al. [16] to extract five major test smells (described in Ta-
ble 4) from JUnit test suites and also analyze their impact
on program comprehension and maintenance. The steps
taken to link the identified test smells to builds are as fol-
lows:

1. Retrieve build logs and identify all executed test
classes in each build. In some cases when log files
were not helpful, due to the used build automation
tool (i.e., Gradle, Maven) and how developers con-
figure the log level, we determine test files from the
file system and build configuration.

2. Find the source files that were tested by the identi-
fied test classes of the build. We search inside test
files, and we determine the tested source classes us-
ing specific java keywords i.e., import, package, new.

3. Use the approach proposed by Bavota et al. [16] to
detect the test smells in Table 4.

Please note that we could not retrieve test files for 6.9% of
the builds due to missing information in the log files caused
by multiple reasons (i.e., cancelled builds, skipped tests,
missing logs, and errors in parsing travis.yml files). We
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Table 2: Overview of development process features of Rausch et
al. [10] and Zolfagharinia et al. [5]

Di
m
en
sio
n

Feature Name Definition

C
om

pl
ex
it
y

of
ch
an

ge
s

Number of commits NC The number of commits that were involved in the actual build

Number of authors NA The number of distinct authors involved in the changeset.

Number of modified

files
NMF

The total number of distinct files changed in all commits

of the changeset.

Number of lines

added
NLA The number of lines added in all commits of the changeset.

Number of lines

removed
NLR The number of lines removed in all commits of the changeset.

Change scattering CX
Shannon entropy measures how concentrated each changeset

was across the changed files.

F
ile

ty
pe

s

File types FT

The types of files that were modified in the changeset.

For example, if a source and a test file were changed, the value

of FT will be "src+test". Rausch et al. [10] characterize four

categories: source, documentation, test, and others.

D
at
e
an

d

ti
m
e

Time of day TD
The time-zone adjusted time of day [0, 23] of the commit

that is triggered the build

Weekday WD
The time-zone adjusted weekday [0, 6] (0 refer to Monday)

of the commit that triggered the build.

A
ut
ho

r

Author experience AX

The time difference in days between the first commit and the

current build of the author of the commit that triggered the

build of the changeset.

Author commit

frequency
ACF

The author’s most occurring time difference between consecutive

commits. We categorize the commit frequency into: daily,

weekly, monthly, other (<20 commits), and single (1 commit).

Core team member CTM

Whether this commit was authored by a developer who has

committed code at least once within the last three months

before this commit.

B
ui
ld

ty
pe Build type BT

The build type BT ∈ {PUSH, PR, MERGE, INTEGRATION,

PR MERGE, UNKNOWN}. First, we determine the event type

(pull request or push) from the Travis Torrent metadata.

Then, we determine from the changeset whether the build is

a push, merge, integration commit or pull request merge in case

we have sole merging trigger commit in the changeset.

B
ui
ld

hi
st
or
y

Previous build PB

The result of the previous build(s). In most cases we have one

or two predecessors. We consider a previous build as a fail if

one or both predecessors are fail. There are some builds without

previous (first build in actual or different branches)

Build climate BC
The build climate, or build stability is the percentage of the

last k builds that failed.

Days since last fail DLF

The time taken since the last reported build failure. We disc-

retize the variable using four intervals. 1) Less than a day ago,

2) A day ago, 3) Less than a week ago, 4) More than a week ago.

B
ui
ld

en
vi
ro
nm

en
t

Build environment BE

The build environment where the build was launched, in our

case, it varies between different versions of the Java JDK:

openjdk6, openjdk7, oraclejdk7, oraclejdk8.

were, however, able to repair almost 71% of these builds
using the list of executed tests in the closest previous build.
We were incapable of repairing the remaining 29% due to
missing previous builds.

3.3. Building Models
In this section, we present the process followed to build

our build failure explanatory and prediction models, based
on the extracted 34 features (along 9 dimensions, as cited
in Table 2, 3 and 4) from 15 studied projects. In the fol-
lowing, we first present the different models used to under-
stand the extent to which build failures can be explained.

3.3.1. RQ1. Fitting Explanatory Models
We use a standard, hierarchical model building ap-

proach, in which we build nine explanatory models for each

Table 3: Overview of code smells features [29]

Dimension Feature Name Definition

Code Smells

Anti Singleton AS
A class that provides mutable class variables that

could be used as global variables.

Base Class Should

Be Abstract
BCSBA A class that has many subclasses without being abstract.

Blob Bl

A large controller class that declares many fields and

methods with a low cohesion. It monopolises most of

the processing, and takes most of the decisions.

Complex Class CompC
A class that has (at least) one large and complex method,

in terms of cyclomatic complexity and LOCs.

Large Class LC A class that has grown too large in terms of LOCs.

Lazy Class LazyC A class that has few fields and methods.

Long Method LM
A class that has (at least) a method that is very long

based on LOCs.

Long Parameter List LPL
A class that has (at least) one method with a too long

list of parameters.

Many Field Attributes

But Not Complex
MFABNC

A class that declares many attributes but which is not

complex and, hence, more likely to be some kind of data

class holding values without providing behaviour.

Refused Parent

Bequest
RPB

A class that redefines inherited method using empty

bodies, thus breaking polymorphism.

Spaghetti Code SC

A class with no structure, declaring long methods with

no parameters, and utilizing global variables. It does not

use object orientation mechanisms.

Speculative Generality SG
A class that is defined as abstract but that has very few

children, which do not make use of its methods.

Table 4: Overview of test smell features [16]

Dimension Features Name Definition

TestSmells

Assertion Roulette AR

JUnit classes containing at least one method having

more than one assertion statement, and having at

least one assertion statement without explanation.

General Fixture GF
JUnit classes having at least one method not using

the entire test fixture defined in the setUp() method

Indirect Testing IT
JUnit classes invoking, besides methods of the tested

class, methods of other classes in the production code

Sensitive Equality SE
JUnit classes having at least one assert statement

invoking a toString method.

Mystery Guest MG
JUnit classes that use an external resource (e.g., a file

or database).

project, each time adding an additional dimension of fea-
tures in order to know its impact on improving models.
Knowledge of the major feature dimensions helps prac-
titioners prioritize their effort in calculating features for
their own models. The order in which the dimensions are
added to our hierarchical model is obtained from a pre-
liminary stepwise backward elimination approach on the
entire dataset. Stepwise backward elimination [39] starts
with a model containing the full set of features, and in a
number of iterations, removes the worst feature from the
model after each iteration (based on mean decrease in im-
purity [40]).

The outcome of the stepwise backward elimination pro-
cess is an ordered list of features. Since our approach is
primarily interested in the order of dimensions instead of
the order of features, we group the ordered features by
dimension and then record their median values. These
median values are used to obtain the order of dimensions.
Thus, our baseline model uses only complexity dimension
features — the best dimension based on our backward
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elimination procedure. Then, step by step, we add a new
dimension and identify any improvements in explaining
build failures.

To build the models, we applied Random Forest clas-
sification [40] that uses a majority voting of decision trees
to create a classification. This algorithm generates an en-
semble that can configure Random Forest to bias and low
variance [41]. Random Forest classifiers have been shown
to achieve the best performance in predicting build fail-
ure [17].

In this study, we build 1000 trees that contain 5 ran-
domly selected features each. To measure the fitness of the
models, we apply ten-fold cross-validation [42], which ran-
domly splits the subject build into ten disjoint sets. Nine
of them are used as training data and the remaining one as
testing data. We repeat this process ten times and report
the overall results for precision, recall, and the area under
the curve (AUC).

We used McNemar’s statistical test, recommended by
Thomas Dietterich [43], to compare between the hierar-
chical models to evaluate whether there is a significant
improvement from a model to another, i.e., to determine
whether a dimension of features is enhancing the model.
In particular, we use a 99% confidence level (i.e., α = 0.01)
to interpret if there is a significant improvement between
two binary classifier. Since we perform a comparison of
a classifier with his predecessor and successor, we applied
the Bonferroni correction [44] to control the familywise er-
ror rate. Concretely, we divide our α by the number of
comparisons, i.e., α = 0.01/2 = 0.005.

In the dataset, there are some projects that have an
imbalanced percentage of build failures, as indicated in
Table 1, which can lead to biases and inaccuracy in the
results [45]. Kotipalli et al. [46] show that performance
degrades as the majority-minority ratio increases. As a
result, the SMOTE multi-class re-sampling method [47]
has been proposed as a technique to increase the number
of minority cases by generating synthetic examples in the
neighborhood of observed build failure minority classes.
However, applying the same SMOTE ratio irrespective of
the majority-minority ratio results in un-uniform perfor-
mance improvements [46]. In an attempt to make the over-
all performance more uniform, we apply different SMOTE
re-sampling level ratios as follows:

• Percentage of failure from 8% to 10% → ratio of 1/4
from majority classes

• Percentage of failure from 10% to 20% → ratio of
3/7 from majority classes

• Percentage of failure from 20% to 30% → ratio of
2/3 from majority classes

• Percentage of failure more than 30% → no SMOTE

3.3.2. RQ2. Most Important Features
After determining the dimensions with the highest im-

pact in our models, we built an additional model that

includes all features of a given project to analyze which
individual features have the highest impact in the model.
We followed the effect size analysis used by Shihab et
al. [48] and Mockus et al. [49].

The effect size outcome helps to know the impact of
each feature, either a positive or negative effect, on the
failure proneness of a project. The effect size approach
first creates a baseline random forest model using the me-
dian value of each feature as input. The mode (most ap-
pearing value) is used for categorical variables like File
Type. To evaluate which features have the most signif-
icant impact on the models, we create a new model for
each feature. Each model replaces the input value for the
studied variable with its median plus one standard devia-
tion (for categorical values, the second most current value
replaces the mode), but keeps the median value for the rest
of the variables. The effect size of each feature on build
breakage can then be calculated, based on a comparison
with the baseline model, as newvalue−basevalue

basevalue . We repeat
this process for all 10 projects.

Finally, the effect sizes of the features can be compared
to each other to find the features with the most significant
impact on build failure. A positive effect size indicates
that an increase in the feature has a high correlation with
an increase in build failures. On the other hand, the more
of a negative effect size feature in a project, the lesser the
likelihood of a build failure. For example an effect size of
0.5 indicates 50% increase in failure-proneness, and vice-
versa for a negative effect size.

3.3.3. RQ3. Predicting Future Builds
We used the most impactful features identified in RQ1

and RQ2 to build models predicting future failure. To
predict future builds, we ordered our data chronologically.
We split up the dataset in sets of 200 builds, then build
and evaluate models exploiting the sequential ordering of
the sets. First, we use a model trained on the first set to
predict the next set. Then, the one which was predicted
becomes the training set for a new model that will predict
the subsequent set, and so on.

4. Study Results

In this section, we provide answers to the research ques-
tions posed in Section 1. For each question, we describe
the motivation behind the question, the approach to ad-
dress the question, and present our findings.

RQ1: How well do models based on the considered factors
explain build failures?
Motivation: Previous works have studied the correla-
tion between features and failures within software systems.
Rausch et al. [10] and Zolfagharina et al. [5] found that
different kinds of features (e.g., development process, en-
vironment) have a direct correlation with build failures.
Even though these results were promising, they analyze
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the correlation between build failures and one single fea-
ture at a time. We replicate these earlier works on addi-
tional features, all while using multivariate models instead
of the existing independent statistical tests/correlations.
Our study on both the individual and cumulative effect of
these features is needed to better understand the relative
impact of a feature on build failure, since individual fea-
tures might correlate with each other, which becomes clear
while building multivariate models.
Approach: To understand how much we could utilize the
information from the different feature dimensions in Ta-
bles 2, 3 and 4, we hierarchically build nine models using
the random forest algorithm as described in section 3.3.
Additionally, we use the SMOTE statistical technique to
correct any imbalance within our training set. Table 5
summarizes the results for each project. The models that
were significantly improved, according to results of McNe-
mar’s statistical test when compared to previous models
(with fewer features), are in bold in Table 5.
Results:

For balanced projects, we found that the median
precision (recall) across projects increased from
58.3% (52.4%) in the baseline model to 79.0% (69.6%)
in the final model (adding the file type dimension).
We note the largest improvement in model 2 (build his-
tory) in terms of median precision (recall) of almost 13.6%
(14.7%) compared to the previous model (complexity). We
found that the median AUC kept increasing after each
additional model. The median AUC range starts from
56.2% in the complexity model to 75.3% in the file type
model. The better median AUC was noticed in the model
5 (author), which attains 76.3%. Based on McNemar’s
statistical test, we note the highest number of improve-
ments in the Build History model (4 out of 6 projects),
Date&Time (2 out of 6 projects) and Author model (1 out
of 6 projects).

However, for imbalanced projects, we observed
low and fluctuating prediction results each time a
dimension is added; starting from a median pre-
cision (recall) from 2.5% (2.6%) in the baseline
complexity model to 37.5% (12.4%) in the file type
model. We found a median AUC of 49.0% in the complex-
ity model, which later improved to 55.3% in the file type
model. Yet, this still hardly outperforms a random model.
While these projects contain a large amount of data, they
have a very low percentage of build failures, varying be-
tween 8% and 14%. Although the SMOTE technique was
applied in these cases, our models still have difficulties an-
alyzing these imbalanced datasets. The low performance
of models on imbalanced datasets is still an ongoing chal-
lenge. As such, our findings confirm those of a recent study
by Jin and Servant [22], which also showed a relatively
low prediction performance in 10-fold models, with an in-
terquartile precision ranging between 15% and 46%, and
recall between 0% and 30%.

With the exception of the models that introduce the
Build History (model2) and Author (model5) dimensions,

all other models do not show any noticeable statistical im-
provements. We perform further analysis (in RQ2) to bet-
ter understand these findings by studying the effect of the
individual features within the models.�

�

�

�

The precision, recall and AUC of our models improve
substantially as we incrementally add feature dimen-
sions. Our explanatory models achieve a (median)
precision of 79.0%, a recall of 69.6%, and AUC
of 75.3% in balanced projects. However, in im-
balanced projects, we attain (median) precision of
35.5%, recall of 12.4% and AUC of 55.3%.

RQ2: Which features are the best indicators of build fail-
ures?
Motivation: After building our explanatory models based
on the different dimensions, we would like to perform finer-
grained analysis to further understand why some dimen-
sions have more considerable significant improvements in
performance than others, and also identify the individ-
ual effects of each feature. Determining the dimensions
and features that have the highest correlation with build
breakage would allow practitioners to choose the essential
features in future predictive models, as well as identify fea-
tures that increase/decrease the possibility of build failure.
Consequently, knowing the effect of individual features will
help communities apply best practices (e.g., avoid inflation
of specific code smells) before launching a build.
Approach: We performed an analysis to measure the ef-
fect sizes of our features (as described in Section 3.3.2). We
first create a baseline random forest model using the me-
dian values of each feature (obtained from model9 in RQ1)
as input. Then, for one feature at a time, we create a new
10-fold cross-validation model that increases the value of
the (one) feature by its standard deviation but keeps the
same value for all other features.

Using the outcome of these models, we are able to find
out the sensitivity of each feature (i.e., a positive or neg-
ative effect on the build failure). Figure 2 shows the effect
sizes for each feature across the studied projects. A pos-
itive effect of a feature means that the increase of that
feature correlates with more build failure.

We present, in the following, the results of feature effect
size (in Figure 2) by dimension of features.
Results: 5 code smells (LPL, MFABNC, AS, LC,
SG) and 1 test smell (SE) have a positive effect
size, while only a single smell from each category
(SC and MG) has a negative impact. Although SC
and MG do not have a direct impact on build failure, these
smells were present in 70% and 39% of the failure change-
set (of the studied projects), respectively because they are
more correlated with the use of external resources and the
misuse of OOP principles, and not directly related to the
outcome of a project’s build. On the other hand, we iden-
tified AS in 9.3%, LPL in 44.3%, MFABNC in 1.9%, LC
in 2.4%, SG in 1.5% and SE in 20% of the failure change-
set. Other test/code smells features such as long method,
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Table 5: Overview of Precision, Recall, Area Under the Curve (AUC) of Random Forest Models for the balanced and unbalanced projects
(percentages in bold represent significant improvement between two binary classifiers with 99% of confidence level and Bonferroni correction
i.e., α = 0.01/2 = 0.005).

Balanced projects Imbalanced projects Median of model performance

geoserver grails-core jackrabbit-oak presto Singularity storm grpc-java lenskit dropwizard uaa Median Balanced Median Imbalanced

Model1:

Complexity

Precision 63.5 46.5 46 58.3 58.3 69.5 5 0 0 50 58.3 2.5

Recall 70.7 24.6 32.3 57.7 47.2 82.4 5 0 0 26.8 52.4 2.5

Auc 58.7 55.4 52.7 57.1 59.4 49.5 49.2 47.2 48.8 61.6 56.2 49.0

Model2:

Build History

Precision 80.1 73.1 70.7 76.3 55.8 70.4 40 0 50 45 71.9 42.5

Recall 76.4 55.2 63.7 70.6 49.1 85.3 21.1 0 26.8 14.3 67.2 17.7

Auc 76.3 72.4 72.6 75.3 58.1 51 59.1 48.9 62.5 56 72.5 57.5

Model3:

Date&Time

Precision 80.8 79.1 73.7 80.4 57.6 72.3 41.7 12.5 50 50 76.4 45.8

Recall 78.2 59.7 63.1 73.5 53.8 88.2 16.7 6.3 19.6 14.3 68.3 15.5

Auc 77.2 75.7 73.8 77.8 60.2 55.1 57.4 51.5 59.2 56.3 74.7 56.9

Model4:

Build Env

Precision 81.9 80.1 73.6 81.3 59 71.4 36.7 10 41.7 50 76.8 39.2

Recall 79.0 62.1 62.6 74.7 55.1 88.2 16.7 6.3 19.6 13.4 68.7 15

Auc 78.4 77 73 77.7 61 51.6 56.9 51 59.2 55.5 75 56.2

Model5:

Author

Precision 82.2 80.5 76.7 80.7 60.9 72.3 36.5 0 87.5 41.7 78.6 39.1

Recall 80.7 59.7 65.6 76.5 57 89.7 20 0 26.8 12.5 71 16.2

Auc 78.4 77.2 75.3 78 62.9 53.5 58.5 48.9 63.4 56 76.3 57.2

Model6:

Test Smells

Precision 81.9 75 76.8 81.1 65 72.1 40 0 63.3 61.9 75.9 51

Recall 82 58.6 65.9 74.7 59.4 88.2 21.1 0 25 26.8 70.3 23.1

Auc 78.5 74.1 75.8 77.1 66.4 54.3 58.8 50 62.2 62 75 60.4

Model7:

Code Smells

Precision 82.2 80 75.8 80.8 65.3 72.6 26.7 0 66.7 66.7 77.9 46.7

Recall 79.0 58.6 65.9 74.7 56.6 88.2 10.6 0 19.6 19.6 70.3 15.1

Auc 78.2 75.7 75.4 78.7 65.3 54.9 53.5 50 59.5 59.8 75.6 56.5

Model8:

Build Type

Precision 82.1 78.6 77 80 70.2 71.5 41.7 0 58.3 58.3 77.8 50

Recall 82.9 58.6 66.6 74.1 53.8 88.2 15.6 0 19.6 14.3 70.4 14.9

Auc 78.7 74.5 77 77.1 66.7 53.5 56 48.9 59.2 56.8 75.7 56.4

Model9:

File Type

Precision 82.5 83 77 81 70 70.9 25 0 50 63.3 79.0 37.5

Recall 82.5 56.9 66.3 72.9 59.4 88.2 10.6 0 25 14.3 69.6 12.4

Auc 78.7 75 75.7 77.3 68 51.9 53.5 50 62.5 57.1 75.3 55.3

SC
op

en
jd

k7 M
G

AC
F

CX IT AR W
D

La
zy

C
Bl

ob LM NM
F

DL
F

or
ac

le
jd

k7
BC

SB
A

op
en

jd
k6 GF RP
B PB

Co
m

pC
or

ac
le

jd
k8 NL
A FT

N
LR SG LC AX

CT
M AS BT N
A SE BC N
C

M
FA

BN
C TD LP
L

0.4

0.2

0.0

0.2

0.4

Figure 2: Distribution of Effect Size of all features across the 10
projects

blob, assertion roulette show neither positive nor negative
effects on build failure. Although code and test smells are
mostly about readability, understandability and maintain-
ability of the codebase, smells manifest into defects that
can lead to build failure over time [50]. Therefore, develop-
ers should be aware of the potential impact of the presence

of smells on the overall quality of the codebase.
Openjdk7 from Build Environment (BE) has a

negative effect size, while Openjdk6, Oraclejdk7
and Oraclejdk8 have positive effect sizees. Although,
build environment has no remarkable improvement in the
performance of RQ1, we identify openjdk7 as the safest
environment for builds — the chances of build failure de-
creases when more builds use the openjdk7 environment.

Complexity features, i.e., Number of commits
(NC), Number of Author (NA), Number of Lines
removed (NLR) and Number of Lines Added (NLA)
have positive effect sizes. Although in RQ1, we were
not able to identify the effect of the complexity dimen-
sion because it was chosen as a baseline of the explanatory
models, these results indicate that projects are more prone
to build failure as the complexity of the commits increase.
This result supports the findings by Rausch et al. [10] that
high change complexity leads to an increase in build fail-
ure.

Three features of the build history dimension
— Build Climate (BC), Previous Build (PB), and
Days since Last Fail (DLF) — have positive effect
sizes. An increase in the recency and number of previous
build failures has a high correlation with an increase in
build failures. This result supports the findings by Rausch
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et al. [10], as well as, our findings in RQ1 on the impor-
tance of the build history dimension in explaining build
failures.

Author Experience (AX) has a positive effect
size. This result shows that developers who build more
frequently (i.e., have high AX and ACF) may have a higher
failure ratio, as also observed by Seo et al. [21]. Our result
explains the significant statistical improvement of the au-
thor dimension model (model 5) in 1 out of 10 projects (see
RQ1). We also confirm the results shown in the replicated
study [10].

Time of Day (TD) has a positive effect size. Sim-
ilar to previous studies (e.g., [51]), our results show that
commits after midday have a high correlation with build
failure.�

�

�

�

Several dimensions in RQ1, such as code/test smells,
did not show a statistical improvement. However, in-
dividual features (5 code and 1 test smells) have
a positive effect size and correlate with build fail-
ure. Additionally, individual features of the complex-
ity of changes, build history, and author dimen-
sions have the highest correlation with build failures.

RQ3: Can we predict the outcome of future builds?
Motivation: In RQ1 and RQ2, we trained and tested
models that explored the importance of dimensions and
features (see Tables 2, 3, and 4) to explain build failures.
In this research question, we aim to use the identified im-
portant features to predict the outcome of automated CI
builds. This will give developers the ability to decide if
they should review the changeset (i.e., commits included
in the build) or launch the build, depending on their need
to optimize time.
Approach: To predict future builds, the dataset for each
of the 10 studied projects was ordered chronologically.
Then, each successive 200 builds was grouped into one set.
We train our model on the first group of 200 builds, and
test on the next group of builds. This process is repeated
for the subsequent groups of builds (see section 3.3.3 for
details). The model used in this prediction was built with
a subset of the features. To avoid building a model biased
towards the features with positive effect sizes, only the top
50% of such features are included, together with all fea-
tures with negative effect sizes. In total, the model uses
only 19 features (indicated in bold in Figure 2).

Figures 3 and 4 present a comparison of the perfor-
mance (i.e., precision, recall) between the 10-fold cross-
validation explanatory model in RQ1 (model9) and the
on-line prediction model. The purpose of this compar-
ison is to identify any performance gap that may exist
between the explanatory and on-line models. Please note
that within these figures, the first six boxplots (from the
left) represent the balanced projects, and the last four rep-
resent the imbalanced ones.
Results:

Prediction models achieve a median precision
(recall) of 32.7% (31.9%), which is 2.4 (1.2) times
lower than the 10-fold cross-validation models. The
median precision of our prediction model for future builds
ranges between 24.2% and 80.2% in balanced projects, but
less than 20% for imbalanced projects. The median recall
is between 31.1% and 72.7% for balanced projects, and be-
tween 3.8% and 13.6% for imbalanced projects. In compar-
ison, using 10-fold cross-validation explanatory models, we
recorded median precision of 79.0% and 37.5% in balanced
and imbalanced projects, respectively. Also, the recall of
our 10-fold cross-validation model has a median recall of
69.6% in balanced projects and 12.4% for the imbalanced
ones. The results of this RQ shows that the model con-
taining all features obtained high performance — with less
effort to identify and calculate the best features, one can
obtain a strong model. We noticed that our on-line predic-
tion results, although sometimes low, conform to reported
results by Xia et al. [17] and Jin and Servant [22]. Xia
et al. [17] used different classifiers to predict on-line build
failures on the same

TravisTorrent dataset used in this paper [27]. Their
random forest classifier achieved a median AUC around
0.54 and an F1 score of 10% across their studied projects.
Similarly, we computed an F1 score of 29.3% in predict-
ing on-line build failure across studied projects. This out-
come could be attributed to imbalanced classes in the
projects. In the subsequent section, we discuss alterna-
tive approaches that can improve the prediction results
for imbalanced projects.�

�

�

�

We are able to predict future builds with a precision-
recall ranging between 25% and 80% for balanced
projects; for imbalanced projects, our performance
fluctuates with the highest precision (recall) of 20%
(15%).

5. Discussion and Implications

In this section, we provide in-depth discussions (and
further analysis) on how our models can be used to still
predict build failures in projects with insufficient data: few
failing builds, fewer number of total builds, or builds with-
out source code. In addition, we discuss and compare the
results of our replicated studies and their implications, as
well as the observed correlation between build failures and
the new code/test smell features.

5.1. Predicting build failures in projects with insufficient
data

As our results in RQ1 and RQ3 have shown, despite
the efforts to oversample failing builds within our dataset
through the SMOTE approach (see Section 3.3.1), imbal-
anced datasets present a big concern to the performance
of our prediction models. Thus, in this section we first
investigate the number of failed builds required to deliver
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Figure 3: Distribution of precision of predicting Future Builds
across the 200-commit folds compared to the precision of the
10-fold CV models (green triangle)
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Figure 4: Distribution of recall of predicting Future Builds
across the 200-commit folds compared to the precision of the
10-fold CV models (green triangle)

reasonably robust prediction results. A reasonable robust
result in this context is expected to be better than a ran-
dom guess (50% precision/recall). Secondly, we investigate
if our models trained on balanced projects can be used to
predict failures in different sets of projects (cross-project
prediction).

Using sensitivity analysis, we analyze the impact of the
number of failing builds on the performance of build pre-
diction in our set of balanced projects. We repeatedly run
our model from RQ1 on the balanced projects, each time
randomly removing 5% of the failing builds in a project.
For example, given the storm project with an initial 69%
of failing builds, we run our model 14 times, each time
reducing the percentage of failed builds till attaining a 5%
proportion of failing builds. Figures 5 and 6, respectively,
show the precision and recall trendlines of our analysis
including a highlight (dotted green line) of the median
precision/ recall of imbalanced projects.

As shown, a project requires at least 15% to
achieve a reasonably robust precision measure; the
median precision attained by imbalanced projects (from
model9 RQ1) was 37.5% with a build failure proportion of
11%. On the other hand, 40% of failing builds are re-
quired for a reasonably robust recall measure. Un-
fortunately, given our classification of imbalanced projects
as those with less than 30% failed builds, such projects
may always suffer from poor recall results as seen for the
imbalanced projects with the median recall of model9 in
RQ1 (12.4% recall based on a 12% proportion of failed
builds).

Thus, we also investigate whether cross-project (inter-
project) prediction may obtain better results in imbal-
anced projects than our current intra-project models. Us-
ing a model trained on the complete set of features (model9
in RQ1) of the six balanced projects, we attempt to pre-

dict the build outcome of the four imbalanced projects in
our research question analysis. The precision and recall
results are shown in Figures 7 and 8, respectively.

We observe an improvement in both precision
and recall for all imbalanced projects, except the
uua project. There is an average improvement of 26.7%
(23%) in precision (recall) across three imbalanced projects.
The precision (recall) of the uua project, however, de-
creased by 42.8% (3.8%).

Using the same cross-project models, we perform an-
other investigation on the five projects with the lowest
number of total builds. It should be noted that although
these projects were not included in our research question
analysis (see Section 3.1), we still run model9, our explana-
tory model from RQ1, on these projects. Figures 9 and 10
show a comparison of the precision and recall results, re-
spectively, of model9 (RQ1) and cross-project prediction.

There is little to no improvement in either pre-
cision or recall for the 5 projects with fewer total
builds when using cross-project models compared
to the explanatory models from RQ1. Four out of
the five analysed projects (aws-sdk-java, hivemail, jcabi-
github and optiq) gain a slight improvement in precision
(an average of 6.7%); the precision of the other projects
(helios) decreased by 5.6%. Similarly, only two projects
(hivemail and optiq) showed an increase in recall (an av-
erage of 7.7%); the recall of the remaining three projects
decreased by 17%, on average.

As our results have shown, despite the potential im-
provements gained from cross-project prediction, imbal-
anced datasets and insufficient number of builds create a
bottleneck in the performance of our models. This high-
lights the need for additional research for predicting build
failures in imbalanced and small projects (cold starts).
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Figure 5: Sensitivity analysis of precision in terms of failure
percentage in balanced projects.
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Figure 6: Sensitivity analysis of recall in terms of failure per-
centage in balanced projects.
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Figure 7: Comparison of the precision of build failure prediction
in imbalanced projects based on the intra-project (model9 from
RQ1) and cross-project prediction models.
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Figure 8: Comparison of the recall of build failure prediction
in imbalanced projects based on the intra-project (model9 from
RQ1) and cross-project prediction models.

5.2. Prediction on builds without Java source code
As previously discussed in Section 3.1, we removed

builds without Java sources or executed tests from our
analysis due to the requirements of the code and test smell
detection tools. Since these kinds of builds frequently oc-
cur, representing 36% of the total studied builds, we want
to validate the usefulness of our models in such cases. We
create an explanatory model (model-nosources) containing
features from 7 dimensions (all dimensions except the code
and test smell dimensions), but using only the dataset of
builds without source code or executed test (column C in
Table 1). Figure 11 shows a comparison of the performance
(i.e., precision, recall) between the new model (model-
nosources) and the model with source code (model9 from
RQ1) across the studied projects.

We found that model-nosources obtains a me-
dian precision (recall) of 57% (41%). Compared to
a median precision (recall) of 70% (50%) for the source
code models, our explanatory model (model-nosources)
still performs adequately on entities without source code,
including balanced and imbalanced projects. Developers
can, therefore, use our proposed models to predict build
failures on changesets even if they do not contain any

source code or executed tests.

5.3. Comparison of original with replicated findings and
its implications

Our results confirm most of Rausch et al.’s find-
ings, as shown in Table 6. The results in RQ2 affirm
Rausch et al.’s observation that build failures mostly oc-
cur consecutively; we observe a positive effect size of the
Previous Build feature. The results also show that Build
Climate has an impact on build failure i.e., the higher the
ratio of build failures in the last 10 builds, the higher the
probability of the next build failing.. Thus, maintaining
a stable build environment is of utmost importance to all
practitioners.

The results of our effect size (Figure 2) also confirmed
the importance of Complexity features and Author Expe-
rience to build failure prediction. Regarding the author
feature dimension, we found that the Core Team Member
(CTM) has a positive impact on the build failure; authors
that commit more frequently have a higher chance of in-
troducing build failures in our study. This corroborates
with the existing research on models and tools to recom-
mend the best code reviewers for a given code change (e.g.,
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Figure 9: Comparison of the precision of build failure prediction
in projects with fewer number of total builds based on the intra-
project (model9 from RQ1) and cross-project prediction models.

0.00

0.25

0.50

0.75

1.00

aws-sdk-java helios hivemall jcabi-github optiq

Model9 from RQ1 Cross-prediction

Figure 10: Comparison of the precision of build failure predic-
tion in projects with fewer number of total builds based on the
intra-project (model9 from RQ1) and cross-project prediction
models.
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Figure 11: Comparison between performance of models created from
dataset with (model9) and without (model-nosources) source code.

[52, 53]). Such tools will enable experts to review and
validate changes before they are integrated into the main
codebase, effectively decreasing the likelihood of build fail-
ures. Furthermore, given our observation that daily com-
mitters (based on the ACF feature) may not be experts,
i.e., 91% of all failed builds were triggered by daily com-
mitters (compared to 4.7% by the monthly committers),
more research is needed to streamline the identification of
experts within a project.

We also found that while the Time of Day feature has
a high positive effect size, there is no observed effect for
the Weekday feature. This is similar to the findings re-
ported in the replicated study [10]. Due to this high im-
pact of the time of the day feature, we encourage teams to
try to understand what happens at those risky moments,
for example in terms of decrease in focus (e.g., late-night
development, lunch time or Friday afternoon), or related
to “peak moments” in terms of build activity. Managers
should put measures in place to convince developers to in-
stead hold on to those changes and perhaps revisit them
at a a later time instead of submitting them to the build

Table 6: Summary of replication results

Author Key Findings in original study
Confirmed

in replication?

Rausch et al. [10]

High change complexity leads to an increase

in software build failure
Yes

No evidence on whether changes to a specific

file type lead to errors more frequently
No

Little evidence of correlation between the date

or time of a change and the build results
Partially

Authors that commit less frequently tend to

cause fewer build failures
Yes

Build type has a significant influence on the

build outcome
Yes

PRs tend to cause failures more frequently

than changes pushed directly into a branch
No

Previous build results have a significant

effect of the current build’s outcome,as build

failures mostly occur consecutively

Yes

Zolfagharinia et al. [5]

77% of builds succeed across all versions of

the runtime environment
Partially

6% of builds fail across all versions of the

runtime environment
Partially

Results of the remaining 17% builds fluctuates

based on the chosen runtime environment
Partially

servers in the heat of the moment. Further studies should
analyze Time of Day in more detail.

Similar to Rausch et al. [10], we found a relationship
between file type changes and the build outcome. We ob-
serve a high correlation between changes in source/test
files and build failure — 41.5% and 37.1% of failures were
directly related to changes in source and test files respec-
tively. Rausch et al. [10], however, were unable to find
such conclusive evidence as they observed a high num-
ber of build failures related to other file types such as
README.md.

Contrary to the findings of Rausch et al. [10], we ob-
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serve pushed changes to cause more failures than pull re-
quests. This emphasizes our initial recommendation for
the implementation of effective code reviewing mechanisms.

Our results partially confirm Zolfagharinia et
al.’s findings. While their study focused mainly on the
influence of different operating systems (e.g., Windows,
Linux) and runtime environments (Perl) on build outcome,
our work studied the influence of the different JAVA run-
time environments used within the builds (due to the stud-
ied projects that use limited environments only for java
projects).

Despite the difference in analyzed environments, both
approaches identify that builds do not always succeed on
all environments. We observed 59% and 31% success and
failure rates, respectively, across all environments. 10%
of the builds fail on previous versions of the environments
but succeed on latter versions (e.g., OpenJDK6 vs Open-
JDK7). Given that multiple environments in a project
introduce an inflation of builds, analyzing and identifying
such cross-environment build failures is not a trivial task.
Though significant strides have been made in the domain
of build prediction, additional research is needed for cross-
environment build prediction. Traceability tools, based on
such research, can be used to help developers identify the
build environments associated to any code change.

The results of our multivariate analysis (not
considered in the original studies) provides addi-
tional implications for stakeholders. We found that
the outcome of a build was impacted by code smells such
as Antisingleton (AS), Long Parameter List (LPL) and
Many Field Attributes But Not Complex (MFABNC), and
test smells such as Sensitive Equality (SE) — the more we
do have these smells, the higher the likelihood of failure.
These three code smells were present in 18.5% of all failed
builds, on average, while the SE test smell was present in
20% of all the builds across projects. The SE smell usually
occurs when the implementation of a toString() method
change might result in a test case failure [54] that breaks
the entire build. In addition, we found that although the
Mystery Guest smell has a negative effect size and no di-
rect impact on build failure, it was present in 39% of build
failures across the studied projects. Such tests are difficult
to comprehend and maintain, due to the lack of informa-
tion to understand them [54].

Code and test smells impact the maintainability and
readability of systems, as well as, the frequency source
code is changed [13, 55], ultimately, making systems more
fault-prone. Developers should be aware of the correlation
of these code and test smells and try to fix them as soon
they emerge in the system; their presence may introduce
inconsistent build outcomes due to the possibility of flaky
test results. Projects and developers are recommended
to implement a layer in their build system to detect and
suggest refactorings based on the chosen code/test smells
before executing the build.

Finally, as shown in our results, imbalanced datasets
always pose a challenge to the performance of ML mod-
els, and using techniques such as SMOTE does not always
provide additional benefits. Our analysis in Section 5.1
shows that cross-project prediction models (trained on bal-
anced projects) can provide reasonable results on imbal-
anced datasets. However, more research is needed to help
choose the right projects and datasets to train such cross-
project prediction models; such approaches should take
factors such as the domain of projects and category of build
failures into account. We also suggest for researchers to use
the sensitivity analysis in their machine learning models to
better estimate the performance limits of their proposed
models, especially with imbalanced datasets.

6. Threats to Validity

In this section, we examine the most significant threats
to the validity of our study.

Construct validity. 6.8% of all builds in the dataset
did not have log files available. In these particular cases,
we were not able to identify which test files were executed.
To minimize this threat, we used the test cases executed
in the preceded build. We were able to recover 5% of the
executed tests; the remaining 1.8% were not resolved due
to unavailable previous build information.

Also, it was not feasible to analyze smells for each
change in the dataset (on each build) due to the amount
of time the process takes. To mitigate this threat, we an-
alyze code smells for a window of 200 builds, as described
in Section 3.2. This could impact the results of our smell
detection since a file (containing smells) could be modified
within the same analyzed window. However, Chatzigeor-
giou and Manakos [56] have shown that smells in source
code persist over several versions unless refactoring activ-
ities are performed. When computing the build climate
and previous build features, 0.4% of builds did not have
enough previous builds. In such cases, we assign an un-
known parent by replacing null values with "-1" [35] [36].

Although the grails-core project is characterized mainly
as a Java project, it also contains almost 54% groovy files.
However, the impact of this is mitigated since our analy-
sis only considers builds that contained java sources and
tests.

Internal validity . Our results could be affected by
the precision of the tools that we used to extract code
smells [29] and test smells [16]. As a result, we could have
missing results for both test and code smells. However,
due to the large number of builds analyzed in this work,
we are confident that the risk of bias is greatly reduced.

External validity. In this work, we only consid-
ered Java-based projects utilizing Travis-CI and either the
Maven or Gradle build frameworks. Further, we only ex-
plored projects utilizing Git and hosted on GitHub. Our
results might not be generalized for other version control
workflows. Also, since we only study projects of substan-
tial size (based on their median build time and number of
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releases), our results may not be generalizable for smaller
OSS projects, particularly those that have less number of
CI builds.

7. Conclusions and Future Work

We perform a replication of two earlier studies [10, 5]
using a different data set and additional features from two
more dimensions using multivariate models based on these
features to help explain and predict future builds. During
our analysis we answer the following research questions:

1. How well do models based on the considered factors
explain build failures? Our models achieve (median)
precision of 79%, a recall of 69.6%, andAUC of
75.3% in balanced projects. However, in imbalanced
projects, we attain (median) precision of 37.5%,
recall of 12.4% and AUC of 55.3%.

2. Which features are the best indicators of build fail-
ures? 5 code and 1 test smells have a posi-
tive effect size with build failure. time of the
day, complexity dimension entities, build his-
tory entities, author experience have the high-
est effect size features. Developers can use our global
model containing features with a high effect size for
build failure analysis. Based on our findings, de-
velopers are invited to review their changesets that
contain code smells (long parameter list, many

field attributes but not complex) and test smells
(Sensitive Equality).

3. Can we predict the outcome of future builds? Us-
ing the high-impacting features (from RQ2), we were
able to predict the outcome of future builds with
precision (recall) between 25% (30%) and 80%
(73%) for balanced projects. For imbalanced
projects, our model achieved a maximum pre-
cision (recall) of 20% (15%).

The difference in accuracy between balanced and im-
balanced projects show that the usability of prediction
models for build failures depends on the project for which
it is used. We explore the use of cross-project prediction
models as possible approach to deal with imbalanced data
sets and cold starts. Hence, as future work, we want to
further investigate how to handle distinct minority classes
especially when we have a small samples of classes. Given
that our models did not find any correlation with the build
environment with build failure, we aim to perform an ex-
tensive study on models trained with different environment-
specific and environment-agnostic build failure datasets as
proposed by Gallaba et al. [57]. We also aim to improve
our on-line prediction model by adding other new features.
In addition, our model can be extended to dynamically se-
lect the best features to use for prediction based on each
project’s contextual information.
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